7,721 research outputs found

    Classical Electron Model with Negative Energy Density in Einstein-Cartan Theory of Gravitation

    Full text link
    Experimental result regarding the maximum limit of the radius of the electron \sim 10^{-16} cm and a few of the theoretical works suggest that the gravitational mass which is a priori a positive quantity in Newtonian mechanics may become negative in general theory of relativity. It is argued that such a negative gravitational mass and hence negative energy density also can be obtained with a better physical interpretation in the framework of Einstein-Cartan theory.Comment: 12 Latex pages, added refs and conclusion

    Optimal edge termination for high oxide reliability aiming 10kV SiC n-IGBTs

    Get PDF
    The edge termination design strongly affects the ability of a power device to support the desired voltage and its reliable operation. In this paper we present three appropriate termination designs for 10kV n-IGBTs which achieve the desired blocking requirement without the need for deep and expensive implantations. Thus, they improve the ability to fabricate, minimise the cost and reduce the lattice damage due to the high implantation energy. The edge terminations presented are optimised both for achieving the widest immunity to dopant activation and to minimise the electric field at the oxide. Thus, they ensure the long-term reliability of the device. This work has shown that the optimum design for blocking voltage and widest dose window does not necessarily give the best design for reliability. Further, it has been shown that Hybrid Junction Termination Extension structure with Space Modulated Floating Field Rings can give the best result of very high termination efficiency, as high as 99%, the widest doping variation immunity and the lowest electric field in the oxide

    Simulation to enable a data-driven circular economy

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this record.The underlying data can be accessed at 10.15131/shef.data.8246912This paper presents an investigation on how simulation informed by the latest advances in digital technologies such as the 4th Industrial Revolution (I4.0) and the Internet of Things (IoT) can provide digital intelligence to accelerate the implementation of more circular approaches in UK manufacturing. Through this research, a remanufacturing process was mapped and simulated using discrete event simulation (DES) to depict the decision-making process at the shop-floor level of a remanufacturing facility. To understand the challenge of using data in remanufacturing, a series of interviews were conducted finding that there was a significant variability in the condition of the returned product. To address this gap, the concept of certainty of product quality (CPQ) was developed and tested through a system dynamics (SD) and DES model to better understand the effects of CPQ on products awaiting remanufacture, including inspection, cleaning and disassembly times. The wider application of CPQ could be used to forecast remanufacturing and production processes, resulting in reduced costs by using an automatised process for inspection, thus allowing more detailed distinction between “go” or “no go” for remanufacture. Within the context of a circular economy, CPQ could be replicated to assess interventions in the product lifecycle, and therefore the identification of the optimal CE strategy and the time of intervention for the current life of a product—that is, when to upgrade, refurbish, remanufacture or recycle. The novelty of this research lies in investigating the application of simulation through the lens of a restorative circular economic model focusing on product life extension and its suitability at a particular point in a product’s life cycle.Engineering and Physical Sciences Research Council (EPSRC)Royal Academy of Engineering (RAEng)Airbu

    Termination of Triangular Integer Loops is Decidable

    Get PDF
    We consider the problem whether termination of affine integer loops is decidable. Since Tiwari conjectured decidability in 2004, only special cases have been solved. We complement this work by proving decidability for the case that the update matrix is triangular.Comment: Full version (with proofs) of a paper published in the Proceedings of the 31st International Conference on Computer Aided Verification (CAV '19), New York, NY, USA, Lecture Notes in Computer Science, Springer-Verlag, 201

    A vision of re-distributed manufacturing for the UK’s consumer goods industry

    Get PDF
    The linear production of consumer goods is characterised by mass manufacture, multinational enterprises and globally dispersed supply chains. Redistributed manufacture (RDM) is an emerging topic, which seeks to enable a transition of the current linear model of production and consumption, by taking advantage of new technologies. This paper aims to explore the challenges, opportunities and further research questions to set a vision of Redistributed manufacturing for the UK’s consumer goods industry. To set this vision, a literature survey was conducted followed by a qualitative enquiry where PESTLE1 aspects of RDM were analysed. This analysis was interpreted through a roadmap. As a result of this roadmap, four RDM characteristics (i.e. customisation, use of digital technologies, local production and the development of new business models) were identified. These characteristics helped to set the future vision of RDM in the UK’s consumer goods sector

    Can electro-magnetic field, anisotropic source and varying Λ\Lambda be sufficient to produce wormhole spacetime ?

    Full text link
    It is well known that solutions of general relativity which allow for traversable wormholes require the existence of exotic matter (matter that violates weak or null energy conditions [WEC or NEC]). In this article, we provide a class of exact solution for Einstein-Maxwell field equations describing wormholes assuming the erstwhile cosmological term Λ\Lambda to be space variable, viz., Λ=Λ(r)\Lambda = \Lambda (r). The source considered here not only a matter entirely but a sum of matters i.e. anisotropic matter distribution, electromagnetic field and cosmological constant whose effective parts obey all energy conditions out side the wormhole throat. Here violation of energy conditions can be compensated by varying cosmological constant. The important feature of this article is that one can get wormhole structure, at least theoretically, comprising with physically acceptable matters.Comment: Some changes have been mad

    A Wave Function Describing Superfluidity in a Perfect Crystal

    Get PDF
    We propose a many-body wave function that exhibits both diagonal and off-diagonal long-range order. Incorporating short-range correlations due to interatomic repulsion, this wave function is shown to allow condensation of zero-point lattice vibrations and phase rigidity. In the presence of an external velocity field, such a perfect crystal will develop non-classical rotational inertia, exhibiting the supersolid behavior. In a sample calculation we show that the superfluid fraction in this state can be as large as of order 0.01 in a reasonable range of microscopic parameters. The relevance to the recent experimental evidence of a supersolid state by Chan and Kim is discussed.Comment: final version to be published in Journal of Statistical Mechanics: Theory and Experimen

    Transverse rotation of the momentary field distribution and the orbital angular momentum of a light beam

    Full text link
    The transverse beam pattern, usually observed in experiment, is a result of averaging the optical-frequency oscillations of the electromagnetic field distributed over the beam cross section. An analytical criterion is derived that these oscillations are coupled with a sort of rotation around the beam axis. This criterion appears to be in direct relation with the usual definition of the beam orbital angular momentum.Comment: 9 pages, 1 figure with animatio

    Enhancing the significance of gravitational wave bursts through signal classification

    Get PDF
    The quest to observe gravitational waves challenges our ability to discriminate signals from detector noise. This issue is especially relevant for transient gravitational waves searches with a robust eyes wide open approach, the so called all- sky burst searches. Here we show how signal classification methods inspired by broad astrophysical characteristics can be implemented in all-sky burst searches preserving their generality. In our case study, we apply a multivariate analyses based on artificial neural networks to classify waves emitted in compact binary coalescences. We enhance by orders of magnitude the significance of signals belonging to this broad astrophysical class against the noise background. Alternatively, at a given level of mis-classification of noise events, we can detect about 1/4 more of the total signal population. We also show that a more general strategy of signal classification can actually be performed, by testing the ability of artificial neural networks in discriminating different signal classes. The possible impact on future observations by the LIGO-Virgo network of detectors is discussed by analysing recoloured noise from previous LIGO-Virgo data with coherent WaveBurst, one of the flagship pipelines dedicated to all-sky searches for transient gravitational waves
    • …
    corecore